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Abstract. In pure anisotropic or layered superconductors thermal fluctuations induce a van der Waals
attraction between flux lines. This attraction together with the entropic repulsion has interesting conse-
quences for the low field phase diagram; in particular, a first order transition from the Meissner phase to
the mixed state is induced. We introduce a new variational approach that allows for the calculation of the
effective free energy of the flux line lattice on the scale of the mean flux line distance a, which is based on
an expansion of the free energy around the regular triangular Abrikosov lattice. Using this technique, the
low field phase diagram of these materials may be explored. The results of this technique are compared
with a recent functional RG treatment of the same system.

PACS. 74.60.Ec Mixed state, critical fields, and surface sheath – 74.72.Hs Bi-based cuprates

1 Introduction

The physics of flux lines in high-Tc superconductors at
low magnetic fields is dominated by the short ranged
bare repulsion between flux lines and a long ranged en-
tropic repulsion due to thermal fluctuations. This results
in a first order melting transition from the Abrikosov
lattice [1] to a liquid phase close to the lower critical
field Hc1 , as has been predicted some time ago by Nel-
son [2]. For mean flux line distances, a, larger than the
London penetration depth λ, the bare interaction decays
exponentially with a, while the entropic repulsion decays
algebraically ∼(λ2/LTa)2. Here, the thermal length scale
LT = Φ2

0/(16π2T ) ≈ 2/T cm K denotes the length of
an isolated flux line segment that shows a thermal mean
square displacement of the order of λ [3], and Φ0 = hc/2e
is the flux quantum carried by each flux line. Close to the
transition to the Meissner phase, the entropic repulsion
dominates over the bare interaction, leading to a mag-
netic induction B that vanishes linearly with the reduced
field strength h̃ = (H −Hc1)/Hc1 [2].

In strongly anisotropic or layered superconductors an
additional interaction between flux lines has been found
recently by Blatter and Geshkenbein (BG) [4]: in the sit-
uation where the applied magnetic field is perpendicu-
lar to the CuO layers, short scale fluctuations on the
scale of pancake vortices lead to an attractive van der
Waals (vdW) interaction. (This is in fact also the ori-
gin of the long range attraction of a flux line to the sur-
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face [5].) For flux lines separated by a distance R the
strength of this interaction is of the order −λ6/(dLTR

4)
for λ < R < d/ε and ' −λ6/(εLTR

5) for d/ε < R < λ/ε.
Here, ε2 = m/M � 1 denotes the anisotropy of the ma-
terial with m and M the effective masses parallel and
perpendicular to the CuO2 plane, respectively, and d the
interlayer spacing. Apart from this thermally induced at-
traction, also frozen-in disorder in impure superconduc-
tors induces an attraction between flux lines with the same
dependence on the distance R [7,8]. This disorder induced
attraction dominates at very low temperature T � Tdis,
where Tdis depends on the disorder strength [3]. Here, we
will focus on the opposite case T � Tdis where it is suffi-
cient to consider thermal fluctuations.

The competition among the bare, the entropic and the
vdW interactions leads to an interesting phase diagram
at low B values. In particular, the vdW attraction can
lead to an instability of the Abrikosov lattice in the dilute
limit a � λ, resulting in a first order transition between
the Meissner and the mixed phase [4].

In order to calculate the low B phase diagram of pure
layered high-Tc superconductors, one has to calculate the
Gibbs free energy density of this system on the scale of
the mean flux line distance a,

g(a;H,T ) = f(a, T )−
εo lnκ

a2
h̃, (1)

which has to be minimized with respect to a with the
external magnetic field H fixed. Here, f(a, T ) is the free
energy density, εo = (Φ0/4πλ)2 = LTT/λ

2 is the basic
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energy scale, and κ is the Ginzburg-Landau parameter.
Note that the bare lower critical field (in the absence of
thermal fluctuations) is given by H0

c1 = 4πεo lnκ/Φ0, and
that the magnetic flux is related to the flux line distance
via B ' Φ0/a

2.

It is the aim of the present paper to propose a new vari-
ational approach to obtain this effective Gibbs free energy
density, based on a perturbative expansion in small dis-
placements of the flux lines around the regular triangular
lattice. This expansion is justified only if we assume that
the lattice is stable, i.e., that we are above the lower melt-
ing line below which the flux lines form a liquid. The vari-
ational technique allows for a check of this assumption by
virtue of a Lindemann criterion where the self-consistently
determined flux line fluctuations are compared with the
mean flux line distance a.

In order to motivate our efforts, let us shortly review
the approaches that have been followed so far. In their
first paper [4], BG simply added the bare vdW energy,
evaluated on the scale a, to the free energy which contains
the bare and the entropic repulsion mentioned above. In
this way, only contributions from the vdW energy on the
length scale a are taken into account, which bears the risk
of a gross underestimation of its influence because of its
rapid decay for R > λ. In a subsequent publication [6],
BG showed that in the liquid phase, rather the average of
the potential over all distances is relevant, as it appears
in the usual virial expansion of the vdW gas. Using this
technique, one obtains the correct scaling of the vdW con-
tribution to the free energy with the mean FL distance.

In [7], only the dominant contribution from the vdW
attraction on the scale Rmin was taken into account
within a scaling approach, where Rmin is the position
of the global minimum of the bare potential V (R). This
scaling approach is elegant and simple and yields the
correct qualitative picture, but does not allow for quan-
titative predictions. More recently a functional renormal-
ization group (RG) calculation has been adapted to the
same problem [8]; in particular, the low field phase di-
agram of Bi2Sr2CaCu2Ox (BiSCCO) was calculated. In
that approach, the bare flux line interaction is renormal-
ized by thermal fluctuations on all scales between λ and
a, providing an effective free energy on the scale of a. The
problem in this latter method is that the largest scale up
to which fluctuations are taken into account is arbitrary to
some extent; we will see below that this flaw is overcome
in a natural way by the technique that we will develop
below.

The paper is organized as follows: in Section 2 the
variational method is set up for arbitrary bare flux line
interactions. The method is applied to a flux line lattice
in a layered high-Tc superconductor in Section 3. There,
the flux line interaction is modeled by the superposition
of the bare, short range repulsion and the long range van
der Waals attraction, using physical parameters typical
for BiSCCO. The data for the free energy obtained there
are used for the minimization of the Gibbs free energy
density in Section 4. We shortly review the functional RG

approach in Section 5 and compare the two methods. Con-
clusions are drawn in Section 6.

2 Variation of the free energy

Consider a system with N times M flux lines (FLs) in D =
3 dimensions, confined to a box of base area L2 and height
L‖ . (We assume that the applied magnetic field and hence
the flux lines are oriented perpendicular to the CuO layer
structure.) The equilibrium position of line number (n,m)
is given by Rn,m = n a1 + ma2, where a = |a1| = |a2| is
the mean distance between the FLs. Since in equilibrium
the FLs form a triangular lattice we choose

an = a (cos(φn) ex + sin(φn) ey), φn =
π

12
+ n

π

3
· (2)

For n = 1, . . . , 6 these an are the distance vectors R−R′

for all nearest neighbors R′ of R on a triangular lattice;
note that only the first two of these distance vectors have
been used in our parametrization of Rn,m. With this def-
inition of the vectors an the equivalence of the x and the
y direction is ensured. This results in the simple form for
the matrix Kαβ(q) defined below.

We write the actual position of line (n,m) at height
z as

rn,m(z) = Rn,m + un,m(z). (3)

The interaction between the vortices (n,m) and (n′,m′)
is described by the function V (r(z)) that depends on the
distance at equal height z. We have made the usual as-
sumption that the vortex coordinates vary slowly with z,
so that the FL interactions are well approximated by a
potential which is local in z; this approximation is only
strictly valid when the vortices are parallel to z.

The system is governed by the Hamiltonian

H =
κ

2

∫ L‖

0

dz

N∑
n=1

M∑
m=1

(∂zun,m(z))2

+
1

2

∫ L‖

0

dz
∑

(n,m)6=(n′,m′)

V (rn,m(z)− rn′,m′(z)). (4)

This description of a FL lattice applies in the limit of fluc-
tuations on scales larger than λ, with a non-dispersive line
tension κ = εl(kz � 1/λ); on smaller scales, the FL ten-
sion εl(kz) in anisotropic superconductors is in fact highly
dispersive [9]. The FL interaction V (R) will be specified in
Section 3; the following treatment makes no assumptions
about its specific form.

Applying periodic boundary conditions in all 3 spatial
directions (in particular un+N,m = un,m and un,m+M =
un,m), equation (4) can be rewritten in Fourier space as

H =
κ

2

∑
q

q2
z |ũ(q)|2 +

∫ L‖

0

dz
∑

(n,m)6=(n′,m′)

∫
d2k

× Ṽke
ik·(Rn,m−Rn′,m′+un,m(z)−un′,m′(z)). (5)
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Fig. 1. First Brillouin zone and summation area in q⊥-space.
The vectors q⊥ with (n,m) = (N, 0), (0,M) and (N,M) as
defined in equation (6) are reciprocal lattice vectors.

The wave vector qz takes the discrete values 0, 2π/L‖ , . . . ,
Λ. The ultra violet cutoff Λ has to be introduced explicitly
in order to avoid a divergence of the free energy. For the
discrete set of q⊥ = (qx, qy) vectors that are summed over,
we choose

q⊥ =
2
√

3

2π

a


n

N
cos(π/12) −

m

M
sin(π/12)

m

M
cos(π/12) −

n

N
sin(π/12)

 , (6)

with n = 0, . . . , N − 1 and m = 0, . . . ,M − 1. This
is equivalent to choosing the q⊥ vectors from the first
Brillouin zone (in the 2-dimensional plane perpendi-
cular to the field direction). The summation area in
Fourier space, together with the first Brillouin zone, is
illustrated in Figure 1.

The Fourier transform of the fluctuating field un,m(z)
is defined as

ũ(q) =
1√

NML‖

∫ L‖

0

dz
∑
n,m

un,m(z)e−iq⊥ ·Rn,m−iqzz,

(7)

and the Fourier transform of the potential V (r) as

Ṽk =
∫
d2xV (x) e−ik·x.

Now, we define a Gaussian variational Hamiltonian

H0 =
1

2

∑
q

Kαβ(q)ũα(q)ũβ(−q), (8)

with summation over the Cartesian components α, β =
1, 2, and rewrite the original Hamiltonian as

H = H0 + (H −H0). (9)

Let 〈. . . 〉0 denote thermal averages with respect to H0.
Clearly,

〈uα(q)uβ(q′)〉0 = kBT δ3
q+q′ K̃

αβ(q), (10)

where K̃(q) is the Matrix inverse of K(q), i.e.,

Kαβ(q)K̃βγ(q) = δαγ .

The correlation function K(q) is a 2× 2 matrix:

K(q) =

(
KD(q) KO(q)

K∗O(q) KD(q)

)
. (11)

While the diagonal terms KD(q) are real, the off-diagonal
part KO(q) may in principle take on complex values. In
a straightforward but tedious calculation it can be shown
however that KO(q) is actually real, too. For complete-
ness, we give the explicit expression for the matrix inverse
K̃(q):

K̃D(O)(q) = +(−)
KD(O)(q)

K2
D(q) −K2

O(q)
· (12)

As stated in the introduction, our aim is to minimize the
Gibbs free energy density g(a;H,T ) as defined in equa-
tion (1) as a function of the mean FL separation a. Let
us first consider the free energy F = F (a, T ). We define
an approximate free energy F ∗ that is obtained by a first
order perturbation expansion around F0, the free energy
associated with H0,

F ∗ = F0 + 〈H −H0〉0. (13)

It is well-known [10] that for any choice of H0, F ∗ is an
upper bound on the true free energy F . Therefore min-
imization of F ∗ with respect to the parameters defining
H0, KD(q) and KO(q), yields the best approximation of
its kind, namely H0 corresponding to the optimal param-
eters is the best fluctuating lattice Hamiltonian that may
be used to describe our physical system. The free energy
F0 is given by

F0 = −β−1 ln

∫
D[u] e−βH0

=
1

2β

∑
q

ln det(βK(q)). (14)

Next, the expectation value 〈H−H0〉0 shall be calculated.
To proceed, it is useful to rewrite the last term in the in-
teraction part of (5) using the Fourier representation (7).
Then, the averaging can be immediately carried out, lead-
ing to

〈H−H0〉0 =
κ

2

∑
q

q2
z Tr [ K̃(q) ]− L‖NM

Λ

2π
kBT

+
L‖NM

2

∑
a

∫
k

Ṽk e
ik·a (15)

×exp

(
−

2kαkβ
NML‖

∑
q

sin2(q⊥·a/2)K̃αβ(q)

)
.

We restrict the sum
∑

a to a summation over nearest
neighbors, which is a good approximation in the dilute
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limit we are interested in; in principle, one can also include
next-nearest neighbors, etc. For the triangular lattice, it is
convenient to choose the 6 vectors an from equation (2),
with n = 1, . . . , 6.

In the following, we choose the temperature kBT =
β−1 as the basic energy scale, and introduce the parame-
ters κ̃ = βκ, the reduced potential v(r) = βV (r) and the
reduced Hamiltonian H = βH. Finally, we replace βK(q)
by K(q).

The variational parameters KD(q) and KO(q) are
determined by minimizing F ∗:

∂F ∗

∂KD(O)(q)
!
= 0. (16)

This leads to

KD(q) = κ̃q2
z − 2

∑
a

sin2(q⊥· a/2)Aa (17)

KO(q) = −2
∑
a

sin2(q⊥· a/2)Ba (18)

where we have defined

Aa =
1

2

∫
k

k2 ṽ(k) e−ik·ae−
1
2kαM

αβ
a kβ (19)

and

Ba =
1

2

∫
k

2kxky ṽ(k) e−ik·ae−
1
2kαM

αβ
a kβ . (20)

By comparison with equation (15), the 2 × 2 matrix Ma

is defined as

Mαβ
a =

4

MNL‖

∑
q

sin2(q⊥· a/2) 〈uα(q)uβ(−q)〉0, (21)

where we have plugged in the representation (10) of the

matrix inverse K̃(q). Again, Ma,D and Ma,O are the di-

agonal and off-diagonal terms, respectively. M̃a denotes
the matrix inverse of Ma. Equations (16–21) serve as a
self-consistent set of equations for K(q).

3 Van der Waals interaction

To be specific, we take the bare potential v(R) to be
given by the superposition of the short range repulsive and
the long range attractive interaction describing the direct
vortex-vortex interaction in the extremely decoupled limit
ε→ 0,

v(R) = v0

(
K0(R/λ)− avdwφ(R/λ)

λ4

R4

)
, (22)

where v0 = 2εo/kBT measures the amplitude of the direct
interaction between flux lines, and avdw determines the
strength of the thermal vdW attraction. φ(x) is a function
that smoothly cuts off the power law part forR . λ, which

we have defined as

φ(x)=


0, x ≤ x1

1

4

[
1 + sin

(
π
x− (x1 + x2)/2

x2 − x1

)]2

, x1 < x < x2

1, x ≥ x2

(23)

with x1 = 1 and x2 = 5. The choice of the cutoff function,
as well as the actual values of x1 and x2, is to some extent
arbitrary; x1 = 1 is however an obvious choice, and x2

has to be chosen such that the cutoff is not too sharp
and, on the other hand, does not influence the form of the
potential in the vicinity of the minimum for those values
of avdw that are physically meaningful [8].

In order to make quantitative predictions for the low-
field phase diagram of layered high-Tc superconductors,
we identify the parameters introduced above with phys-
ical parameters characterizing those systems: the elastic
constant is κ̃ = εo/2kBT in the long wavelength regime
λkz � 1 [9], and the amplitude of the vdW attraction
(relative to v0) is given by avdw ≈ kBT/(2εod ln2(πλ/d)),
where d is the layer spacing [4,8].

Let us quantify these parameters for a specific highly
anisotropic material, BiSCCO. This superconductor is
characterized by the London penetration depth λ ≈
2000 Å, a Ginzburg-Landau parameter κ ≈ 100, a layer
spacing d ≈ 15 Å and an anisotropy parameter ε ≈ 1/300
[9]. Together with the thermal length LT ≈ 2/T cm K, we
find for our model parameters the values λκ̃ ≈ 105/T K,
v0 = 4κ̃, and avdw ≈ 2 × 10−5 T K−1. At T = 100 K,
which is of the order of the critical temperature Tc, we
finally have λκ̃ ≈ 103 and avdw ≈ 2 × 10−3. We want
to feed the potential (22) with κ̃ and v0 discussed above
into the variational procedure. The London penetration
depth λ is chosen to set the length scale in the direction
perpendicular to the FLs, i.e., all lengths are measured in
terms of λ.

Although the vdW amplitude avdw is determined by
material parameters and the temperature as noted above,
we will tune this parameter here in order to find whether
a “critical” value a∗vdw exists where the phase transition
from the Meissner phase to the mixed phase changes its
character from a second order (for a < a∗vdw) to a first
order transition (for a > a∗vdw).

With these parameter values and the potential (22),
we have solved the set of self-consistent equations (16–
21) numerically for different values of the mean spacing
a with fixed FL number N ×M and fixed vertical length
L‖ . In order to speed up computation, the sums over qz
were replaced by integrals.

First, we present the fluctuation matrices (21) as a
function of the mean FL distance a. There are 6 fluctu-
ation matrices corresponding to the 6 nearest neighbor
vectors given by equation (2). The special choice of these
vectors an, however, yields only two different matrices,
namely

M (1) ≡Man for n = 1, 3, 4, 6 and

M (2) ≡Man for n = 2, 5. (24)
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Fig. 2. Fluctuations M (i) divided by a2, as a function of the

spacing a. The two curves M
(1)
D and M

(2)
D are hardly distin-

guishable. The vdW amplitude has been set to avdw = 10−6,
and the other model parameters to κ̃ = 103, v0 = 4 × 103,
N = M = 100, L‖ = 5 × 106, Λ/π = 400. In the upper right
corner of the figure, the function L‖/2π2κ̃a2 has been added

(dashed line) which gives the upper bound for M
(i)
D , as derived

in equation (26).

With M (1) and M (2) each having two independent entries
(the diagonal and off-diagonal terms MD and MO, respec-
tively), we have to solve for a total of 4 variables. The
implementation made use of a multi-dimensional Newton-
Raphson method [11]. Numerical solutions for these four
observables are shown as a function of the mean spacing
a in Figure 2. The data shown in this figure stems from
calculations with the vdW amplitude avdw = 10−6; the
corresponding data for higher values of avdw is not signif-
icantly different.

For values of a much smaller than the minimum posi-
tion of the bare potential (which is at Rmin ≈ 27λ for the
vdW amplitude chosen here) fluctuations are strongly sup-
pressed by the direct repulsion from the nearest neighbors.
The fluctuations grow rapidly around a ≈ 25λ, because in
that regime the strong repulsion is neutralized by the vdW
attraction. For a large intermediate range, the fluctuations
scale almost ∼ a2. Note that in that plot, this quadratic
scaling would correspond to a horizontal line. Actually,
the slope is slightly negative, because the attraction con-
tinuously decreases for larger distances. This tendency is
most obvious in the plot of the fluctuations

〈u(0)2〉 =
2

MNL‖

∑
q

K̃D(q) (25)

as a function of a in Figure 3. For a & 150λ, the size of the
fluctuations saturates. This is due to the finite system size
L‖ in the z-direction; in this limit, the contribution of the
potential energy to the free energy density is negligible,
leaving only the kinetic term. This leads to

Ma,D = 〈(ux(x + a, t)− ux(x, t))2〉

' 2

∫ Λ

2π/L‖

dqz

2π

1

κ̃q2
z

≈
1

2π2

L‖

κ̃
, (26)

0

0.05

0.1

0.15

0.2

0 20 40 60 80 100 120
a / λ

<u2>1/2 / a

Fig. 3. The fluctuations (〈u2(0)〉)1/2/a, as a function of a,
from the same numerical data as in Figure 2.

where we have assumed that the correlations between
neighbors are small and that L‖Λ/2π � 1. Finite size
effects will hence occur when the mean vortex distance a
becomes of the order of

√
L‖/2π2κ̃. In this regime, the

off-diagonal terms M
(1)
O and M

(2)
O vanish due to the effec-

tive rotational invariance for each FL in this limit, where
the FLs no longer interact with each other.

4 Minimization of the Gibbs free energy

We will now use the effective free energy density f(a, T ) =
F (a, T )/L‖NMa2, where the free energy F (a, T ) is taken
to be the minimal value of F ∗, to calculate the Gibbs free
energy density

g(a;µ, T ) = f(a, T ) + µ/a2 (27)

which has to be minimized with respect to the mean
FL distance a. For convenience, we have introduced the
“chemical potential” µ ≡ −εoh̃ lnκ, where h̃ = (H −
Hc1)/Hc1 is the deviation of the applied magnetic field
from the lower critical field.

In Figures 4 and 5, the Gibbs free energy density
g(a;µ, T ) as defined in (27) is plotted for two different
values of avdw. For these two values of the vdW ampli-
tude, the transition from the Meissner state to the mixed
phase has different characteristics: for avdw = 10−5, the
transition is continuous because the minimum position of
the potential is continuously shifted to larger values with
growing µ, corresponding to a second order phase transi-
tion.

For avdw = 10−4, on the other hand, the transition is
discontinuous and hence first order, because for µ in the
vicinity of µc, two minima emerge: one at a finite value of
a and the other at a =∞. The magnetization B ∼ 1/a2

min

as a function of H thus shows a first order transition from
the Meissner phase to the mixed phase at a finite mag-
netization Bv. Hence, the principal result from the study
by BG [4] and from the functional RG treatment [8] is
reproduced by the variational approach.
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The transition is illustrated in Figure 6, where
1/a2

min(µ) is plotted as a function of µ − µc. For each
value of avdw, µc has been determined individually such
that g(a;µ > µc, T ) has no minimum at finite a, while it
does have such a minimum for µ < µc. For avdw < a∗vdw,
the magnetic induction is proportional to µ−µc. This scal-
ing arises from the competition between the bare repulsive
interaction and the entropic repulsion alone.

For the parameters chosen above, the “critical” value
of avdw separating the two regimes is found to be a∗vdw ≈
2×10−5. As stated above, the physical value of the ampli-
tude of the thermally induced van der Waals attraction is
of the order avdw ≈ 10−3, hence deep in the regime where
the transition – according to the variational procedure –
is first order. From the data in Figure 6, we read off that
the mean separation between FLs just above the transi-
tion between the Meissner phase and the mixed phase is
amin ≈ 20λ. For BiSCCO, this corresponds to a magnetic
induction Bv ≈ 500 G/(amin/λ)2 ≈ 1.2 G [9].
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Fig. 6. 1/a2
min versus µ− µc for several values of avdw. In the

lower left corner, a (dashed) line has been added that shows
a linear scaling of the magnetic induction B as a function of
µ−µc, revealing the linear scaling of the two lower curves which
correspond to the two lowest values of the vdW amplitude.
The other curves approach a finite value 1/a∗2 for µ → µc,
thus determining the van der Waals magnetic induction Bv =
Φ0/a

∗2.

Now, let us face the question whether the basic as-
sumption of the variational approach, i.e., the existence
of a regular triangular lattice, is valid for these parame-
ters. This can be checked using the self-consistently de-
termined fluctuations by applying a Lindemann criterion
[12,13]. In particular, the elastic structure melts when the
displacement between two neighbors becomes

〈(un(z)− um(z))2〉 ≥ c2La
2, (28)

where n and m denote two neighboring vortices, a is the
lattice constant, and cL is the heuristically determined
Lindemann number. In a recent numerical study on FL
lattice melting [14], this number has been found to be cL ≈
0.25, in agreement with usual estimates for vortex lattice
melting [9]. With the values represented in Figure 3, we
are hence above the lower melting line where the lattice is
still stable [15].

In principle, the variational technique can now be used
to explore the whole low field phase diagram of layered
superconductors, tuning the temperature T . We will re-
strict ourselves here however to the data shown above,
since we do not expect results for the phase diagram that
differ qualitatively from those obtained by the functional
renormalization group treatment to be discussed below.
Instead, we will compare the two techniques and discuss
their relative strengths and flaws.

5 Comparison with the functional RG

As noted in the introduction, the problem considered here
has recently been addressed by a functional renormaliza-
tion group calculation [8]. In that approach, the FL inter-
action potential, equation (22), is renormalized by short
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scale thermal fluctuations, analogous to the first RG treat-
ment of the purely repulsive short range FL interaction by
Nelson and Seung [13]. The starting point of this technique
is the bare Hamiltonian (4) with two interacting FLs. Due
to the presence of neighbor vortices in a typical distance a,
transverse fluctuations are assumed to be confined to this
length scale. Hence, thermal fluctuations are integrated
out by means of a momentum shell RG up to this scale,
a, applying (nonlinear) recursion relations that are closely
related to those that were established in the context of the
wetting transition [16]. (Note that this argument applies
to the system in a liquid state; in the solid state, the fluc-
tuations are confined to a shorter scale < cLa, as we have
seen above.) This procedure renormalizes the interaction
potential, leading to an effective potential V eff (R) on the
scale a.

For large a� λ, the RG takes us into a region of weak
coupling and high vortex densities [13], where the effec-
tive Gibbs free energy density simply reads g(a;µ, T ) =
((z/2)V eff (a)+µ)/a2; here, z = 6 is the number of nearest
neighbors. Again, g(a;µ, T ) has to be minimized with re-
spect to a in order to obtain the Gibbs free energy density
as a function of µ and T , hence on this level the analysis of
the phase diagram is identical to that employed within the
variational technique. This enables us to directly compare
the results of the two approaches.

Returning to the result for Bv obtained above for
BiSCCO at T ≈ 100 K, one finds that this value is con-
siderably higher than BRGv ≈ 0.2 G as calculated from the
functional RG data [8]. This discrepancy is consistent with
the fact that the value for a∗vdw determined above is much
smaller than the value a∗vdw ≈ 2×10−3 which results from
the RG calculations.

The reason for the discrepancy between the two ap-
proaches is given by the fact that they include fluctua-
tions up to different maximal scales, as mentioned above.
In particular, we have found here that fluctuations are
confined to

√
〈u2〉 ≈ (0.10 . . . 0.15)a. Hence, the FLs have

a much smaller contact probability than assumed in the
RG procedure, and the strong short range repulsion does
consequently contribute less to the effective interaction
energy, rendering the effective potential more attractive.

This statement can be made more quantitative by ad-
apting the data from the functional RG to the situation
where the FLs form a lattice by confining the integration
to scales ≤ (1/η) a with a constant η > 1. An example
for the effective interaction V eff

η obtained in this way is
shown in Figure 7.

Indeed, the figure reveals that V ηeff (a) exhibits a global
minimum at a finite length scale a for large enough η, while
it lacks such a minimum for smaller η ≈ 1. With growing
η, the position of the minimum decreases, corresponding
to larger values Bv.

Let us compare the results which are shown in
Figures 5 and 7 from the variational and the RG ap-
proach, respectively, corresponding to the same temper-
ature T = 100 K and the same vdW amplitude avdw =
10−4. For this comparison, we determine the appropriate
coefficient η from the magnitude 〈u(0)2〉 of the fluctua-
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Fig. 7. The effective interaction energy V eff
η (a) which results

from the functional RG procedure when stopping the integra-
tion on the scale a/η. The data result from numerical func-
tional RG calculations with a rescaling factor b = 1.2 and
v0 = 2 × 106, corresponding to the temperature T = 100 K.
The vdW amplitude is set to the values avdw = 10−4.

tions, as measured in the variational calculation, with a set
to the length amin that corresponds to the position of the
free energy minimum. For the present set of parameters,
amin ≈ 25λ (see Fig. 5). The corresponding fluctuations
have been determined to be 〈u(0)2〉1/2 ≈ (0.1±0.02) a (see
Fig. 2). A relatively large uncertainty is attached to this
value because 〈u(0)2〉 varies rapidly in this regime. Now,
we would expect the two techniques to yield comparable
results when choosing η ≈ 10± 2. Indeed, the data com-
pare favorably well: V eff

η (a) as determined from the func-
tional RG with η = 8 exhibits a minimum at a/λ = 26±2
(see Fig. 7), which is consistent with the value determined
by the variational procedure. Modified in this way, both
techniques hence predict the same magnetic flux Bv at the
transition from the Meissner phase to the mixed phase.

6 Conclusion

In layered high-Tc superconductors close to the lower
melting line Hc1 where the mean flux line distance be-
comes larger than the London penetration depth λ, a long
ranged, attractive interaction between the vortices is in-
duced both by thermal or by quenched-in disorder fluc-
tuations which has interesting consequences for the phase
diagram of these materials in the regime of low magnetic
fields B. In particular, this van der Waals attraction may
lead to a first order transition from the Meissner phase to
the mixed phase, both for pure and for disordered super-
conductors.

Restricting ourselves to the pure case, we have estab-
lished a variational technique that allows for the compu-
tation of the van der Waals magnetic induction Bv, which
is based on a self-consistent expansion around the regu-
lar Abrikosov lattice. We have applied this method to the
calculation of Bv in the case of BiSCCO, which is a typi-
cal example of a strongly layered high-Tc superconductor.
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The results for the low field phase diagram of pure lay-
ered superconductors are qualitatively and, to some ex-
tent also quantitatively, consistent with the results from a
functional RG approach. The latter is the more powerful
tool in that it correctly reproduces logarithmic corrections
to the leading scaling behavior. It is hence adequate for de-
termining the true asymptotic behavior at the phase tran-
sition. The variational technique, on the other hand, has
the advantage that it provides an inherent control mech-
anism as to where to stop the coarse graining process or
– in other words – which is the scale on which the ef-
fective interaction has to be considered. Furthermore, by
self-consistently determining the flux line fluctuations, the
results from the variational method can be used to check
a posteriori, using a Lindemann criterion, whether an ex-
pansion around the regular Abrikosov lattice is justified
for a given set of physical parameters – which is the ba-
sic assumption of the variational calculation. Indeed, this
has to be checked carefully since we are working in a part
of the phase diagram where the lower lattice melting line
Bm and the van der Waals magnetization Bv are of the
same order. We note that our result implies that the first
order transition is between the Meissner phase and the FL
lattice for a large part of the phase diagram – in contrast
to previous results that the transition is mainly between
the Meissner and the flux liquid phase [8].

We would like to stress that in order to make solid
quantitative predictions for the low field phase diagram
of BiSCCO, a little more work still has to be done: in
particular, one should correctly account for the dispersive
nature of the line tension εl(k), which would represent
a straightforward extension of our variational approach;
also, one could include next-to-nearest neighbour interac-
tions in the procedure.

Finally, we note that the variational approach may be
extended to the situation with quenched-in impurities us-
ing the replica trick. An advance in this direction could
be guided by variational studies of flux lines lattices in
high-Tc superconductors in the presence of weak disorder
[17,18].

We thank Jan Kierfeld and Thorsten Emig for helpful discus-
sions and the German Israeli Foundation (GIF) for financial
support.
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